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Abstract The early difficulties in accounting for long-range
van der Waals interactions in the framework of density func-
tional theory (DFT) have been overcome to a certain extent
in recent works by several groups, and those interactions can
be computed numerically. In this paper a derivation of the
analytical form of the attractive van der Waals interaction
between two neutral atoms with polarizabilities α1 and α2 at
large distance R, namely Eint = −C6α1α2/R6 is performed
within the context of DFT. Use is made of the properties of
the Coulomb correlation hole, and it is shown that nonlocal
Coulomb correlations are responsible for long-range disper-
sion interactions.

Keywords Atoms · Molecules · van der Waals interaction ·
Electronic correlation · Exchange–correlation hole · Density
functionals

PACS numbers 31.15.Ew · 31.25.Eb · 34.20:Cf

1 Introduction

Density functional theory (DFT) [1–3] is a very successful
tool for the study of atoms, molecules, clusters and solid
materials with metallic, covalent and ionic bonding. The
exchange–correlation energy functional Exc[n] and the
exchange–correlation potential Vxc(r) are key ingredients
in practical implementations of the DFT. The exact form of
Exc[n] is not known and an enormous effort has been ded-
icated to obtain improved approximations to the exchange–
correlation functional beyond the local density approximation
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[4,5]. In fact, the present generalized gradient approximation
(GGA) functionals lead to impressive results in the simula-
tion of the materials mentioned above [6–8]. In contrast, the
treatment of the weak long-range van der Waals forces in
DFT has progressed more slowly. Recent work has produced
very promising results [9–13], although an accurate treatment
simple enough to be incorporated in the usual DFT codes for
materials’ simulation is still to be developed. The most re-
cent work reproduces in a satisfactory way the magnitude of
van der Waals interactions numerically for a variety of mate-
rials [9–11]. That is, those interactions arise after elaborate
numerical calculations which give the interaction energy for
a set of discrete distances R between the two subsystems.
However, an explicit derivation of the analytical form of the
van der Waals interaction in the framework of DFT, that is, of
the usual attractive term −C/R6, arising from a transparent
physical mechanism, has not yet been done to the best of our
knowledge. Recently, Becke and Johnson [14] have presented
a model in which the instantaneous dipole moment of the ex-
change hole (also called Fermi hole) around an electron in an
atom is used to generate a dispersion interaction between no-
noverlapping systems. In this paper we present a derivation
of the form of the van der Waals interaction in the frame-
work of DFT which is based on a microscopic mechanism
fully based on Coulomb correlations. An electron in atom 1
builds a correlation hole that moves around with the electron.
At long distance the potential due to this correlation hole be-
haves, in lowest order, as that of an electric dipole. Then, this
electric dipole induces another dipole on a neighbor atom 2,
and the interaction between the two dipoles is responsible for
the long-range dispersion interaction between the two atoms.

The asymptotic form of the exchange–correlation poten-
tial Vxc(r) in the tail of a free atom turns out to be an impor-
tant ingredient in the method used for deriving the dispersion
interactions between atoms. Although the asymptotic form
of Vxc(r) is known [15], this result is obtained here (except
for a constant factor in one of the terms) in an alternative way
using the properties of the exchange–correlation hole. Then,
in a second step, the analytical form of the van der Waals
interaction between two neutral atoms with polarizabilities
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α1 and α2 at large distance R, Eint = −C6α1α2/R6, is
obtained.

2 Asymptotic form of the exchange–correlation
potential in a neutral atom

The exchange–correlation potential appearing in the single-
particle Kohn–Sham equations of DFT is the functional deriv-
ative of the exchange–correlation energy functional Exc[n]
Vxc(r) = δExc[n]

δn(r)
. (1)

Since the exact functional Exc[n] is not known, the exact
potential Vxc(r) is also unknown. However, the asymptotic
form of Vxc(r) for a neutral atom (or a molecule) was derived
by Almbladh and von Barth [15]. This asymptotic form is

Vxc(r) = −1

r
− α

2r4 , r → ∞, (2)

where α is the polarizability of the single-charged positive
ion. Almbladh and von Barth obtained this asymptotic form
using the Kohn–Sham equations and the asymptotic behav-
ior of the electron density n(r) of the atom. The knowledge
of the asymptotic form of Eq. (2) has been of great help
in developing and testing approximations to the exchange–
correlation potential [16,17]. The asymptotic form given in
Eq. (2) is now obtained (except for a constant factor in the
second term) using a different method, based on the explicit
use of the exchange–correlation hole surrounding an elec-
tron. The interest of the alternative method is based on the
fact that it serves to enlighten the properties of the exchange–
correlation hole and to stress its importance in other applica-
tions; those properties will be exploited in Sect. 3.

The exchange–correlation energy can be written as:

Exc[n] = 1

2

∫ ∫
n(r)n(r′)[gxc(r, r′; [n]) − 1]

|r − r′| d3rd3r ′,

(3)

where gxc(r, r′; [n]) is the pair correlation function (inte-
grated over the coupling constant for the Coulomb interac-
tion). It is useful to interpret this energy as the interaction
between two charge distributions. The first one, n(r), is the
electronic density of the system, and the other

nxc(r, r′) = n(r′)[gxc(r, r′; [n]) − 1], (4)

represents the exchange–correlation hole around an electron
placed at r (this reduces to the exchange hole, or Fermi
hole, if Coulomb correlation is neglected). The exchange–
correlation hole accounts for the instantaneous decrease of
the electron density at points r′ due to the presence of an
electron at r. Performing the variational derivative of the
exchange–correlation energy [18,19] one obtains

Vxc(r) = 2Vxc1(r) + Vxc2(r), (5)

where

Vxc1(r) = 1

2

∫
n(r′)[gxc(r, r′; [n]) − 1]

|r − r′| d3r ′ (6)

and

Vxc2(r) = 1

2

∫ ∫
n(r′)n(r′′)
|r′ − r′′|

δgxc(r′, r′′; [n])
δn(r)

d3r ′d3r ′′.

(7)

Gritsenko and coworkers [20,21] have analyzed the two terms
in Eq.(5) for the case of neutral atoms. The first term, 2Vxc1(r),
is equal to the potential of the exchange–correlation hole
and represents the screening of the full Hartree potential by
exchange–correlation effects. It was called the screening po-
tential by these authors. The other term, Vxc2(r), which de-
pends on the functional derivative of gxc(r′, r′′; [n]), was
called the screening response potential. Vxc2(r) is short ranged
in an atom [22,20] and does not contribute to the asymptotic
behavior of Vxc(r). Consequently,

Vxc(r) = 2Vxc1(r), r → ∞. (8)

The leading term, −1/r , in the asymptotic behavior of Vxc(r)
is easily obtained [22]. Since r is very large, r′ can be ne-
glected with respect to r in the denominator in Eq. (6). Then

Vxc(r) = 1

r

∫
n(r′)[gxc(r, r′; [n]) − 1]d3r ′, r → ∞.

(9)

The exchange–correlation hole density fulfills a sum rule
requiring the normalization of the hole charge∫

n(r′)[gxc(r, r′; [n]) − 1]d3r ′ = −1, (10)

that is, a total charge equivalent to one electron is removed
from the neighborhood of an electron located at r, building
a hole of charge around that electron. Then, Eq. (9) immedi-
ately gives the leading term, −1/r , in the asymptotic behav-
ior of Vxc(r), since the deficit of electronic charge acts as a
positive charge.

To obtain the next asymptotic term it is convenient to
separate exchange and correlation. For this purpose one can
return to Eq. (4) and separate the exchange–correlation hole
density nxc(r, r′) as a sum of exchange and correlation con-
tributions

nxc(r, r′)=nx(r, r′)+nc(r, r′)
=n(r′)

[
gx(r, r′; [n])−1

]+n(r′)
[
gc(r, r′; [n])−1

]
.

(11)

The correlation contribution to Vxc(r), which is the important
ingredient in the present discussion, becomes

Vc(r) = 2Vc1(r) =
∫

n(r′)[gc(r, r′; [n]) − 1]
|r − r′| d3r ′, (12)

with a similar expression for the exchange contribution. The
Coulomb correlation hole density nc(r, r′) has an interesting
structure. Since the pure exchange hole also fulfills the sum
rule∫

n(r′)[gx(r, r′; [n]) − 1]d3r ′ = −1, (13)

this implies
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∫
n(r′)[gc(r, r′; [n]) − 1]d3r ′ = 0. (14)

That is, Coulomb correlation does not remove a net charge;
it simply modulates the instantaneous electronic distribution
around the reference electron. Charge is displaced from the
close neighborhood of the electron to a more distant region
and thus the correlation hole density nc(r, r′) has regions of
negative values and regions of positive values. Since we are
interested in evaluating Vc(r) in the limit r → ∞, we per-
form a multipolar expansion in Eq. (12) and keep the leading
contribution, which is an attractive dipolar term

Vc(r) ≈ − D[r]
r2 , r → ∞, (15)

where D[r] is the effective dipole moment of the correlation
hole charge. That is, an electron in the asymptotic tail of the
atom views the charge modulation associated to its corre-
lation hole as an electric dipole. This correlation dipole is
localized in the bulk of the atom, with its magnitude depend-
ing on r, the position of the reference electron in the tail of the
atom, and the notation used in Eq. (15) reflects this fact. One
can notice that there is no monopole term in the expansion
because the net charge of the correlation hole is zero. This,
on the other hand, shows that the leading term in Eq. (2) is
due to exchange exclusively.

One may wonder if a term similar to that in Eq. (15)
could arise from the exchange hole. However, it is known
that for r → ∞ in a finite system nx(r, r′) = −n(r′)/Ne,
where Ne is the number of electrons [23]. This means that
for an electron in the tail of the atom, its exchange hole lags
behind and it is spherically symmetric with respect to the
position of the nucleus, so the dipolar and higher multipolar
components of the exchange hole charge are exactly zero and
only the monopolar term, already discussed, contributes in
this r → ∞ limit. Consequently, the dipolar contribution to
the asymptotic form of Vxc(r) in Eq. (2) is due to Coulomb
correlation exclusively.

The next step is an estimation of the magnitude of the
dipole moment using arguments similar to those of linear re-
sponse theory. In linear response, the dipole moment induced
in a system by an electric field E is the product of E and the
polarizability of the system. The correlation effect we are
discussing is due to the Coulomb interaction. Then, one can
argue that for large r , the magnitude D[r] of the correlation
dipole induced in the bulk of the atom by the presence of a
reference electron at r is proportional to the electric field of
the reference electron, that is, proportional to r−2. In addi-
tion D[r] has to be proportional to the polarizability α of the
single-charged positive ion, since an electron in the tail of the
atom leaves behind a positive ion. Consequently, the leading
term in the asymptotic behavior of Vc(r) is

Vc(r) = −cα

r4 , r → ∞. (16)

The constant c can be fixed by comparison with Eq. (2), with
the result c = 1/2.

In summary, the asymptotic form of the exchange
–correlation potential in the tail of a neutral atom can

be understood as arising from the properties of the
exchange–correlation hole left behind by the electron. The
leading term is due to exchange, and reflects the fact that the
exchange hole removes an amount of charge equivalent to
one electron. The next term reflects the fact that the Cou-
lomb correlation hole does not remove a net charge but only
displaces charge from the neighborhood of an electron into a
more distant region. That term is due to the dipolar compo-
nent of the Coulomb correlation hole charge.

3 Long-range dispersion interactions between two atoms

Let us now consider two neutral systems, for instance two no-
ble gas atoms, separated a distance R. The correlation energy
functional of the system can be written as:

Ec[n] = 1

2

∫ ∫
n(r)n(r′)
|r−r′|

[
gc(r, r′; [n])−1

]
d3rd3r ′.

(17)

The case of interest here is when the two atoms, with electron
densities n1(r) and n2(r), are at distances such that the over-
lap of the densities is small and there is no electron density
redistribution. In this case Eq. (17) can be written as:

Ec[n] = 1

2

∫ ∫
(n1(r) + n2(r))(n1(r′) + n2(r′))

|r − r′|
× [

gc(r, r′; [n]) − 1
]

d3rd3r ′. (18)

This notation makes explicit that the pair correlation function
is a nonlocal functional of the total density n. The relevant
contribution to the long-range interaction comes from the
cross terms in Eq. (18), that is,

Eint =
∫ ∫

n1(r)n2(r′)
|r−r′|

[
gc(r, r′; [n])−1

]
d3rd3r ′. (19)

In the limit of negligible overlap between the electron densi-
ties of the two atoms

Eint=
∫

�1

d3r1n1(r1)

∫

�2

n2(r2) [gc(r1, r2; [n])−1]

|r1−r2| d3r2, (20)

where the notation emphasizes that the integral over r1 is
extended to the volume of atom 1 and the integral over r2
is extended to the volume of atom 2. The integral over the
variable r2 can be considered as the potential at r1 due to the
correlation charge distribution nc(r1, r2) for r2 restricted to
the volume of atom 2, that is,

Vc(r1) =
∫

�2

n2(r2)[gc(r1, r2; [n]) − 1]
|r1 − r2| d3r2. (21)

In other words, for a reference electron placed at r1, Vc(r1) of
Eq. (21) is the potential due to the part of its correlation hole
localized in atom 2. This is a fully nonlocal effect of Cou-
lomb correlation: even if the electron densities of atoms 1
and 2 do not overlap, when one electron is on the tail of atom
1, part of its correlation hole is localized in atom 2 because
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the Coulomb interaction is long ranged. The exact shape of
the part of the correlation hole in atom 2 is complex but its
qualitative form is simple. Let us consider that the position
r1 of the reference electron is on the tail of atom 1 facing
atom 2. The Coulomb repulsion then leads to an instanta-
neous modulation of the electron density of atom 2: there is
a decrease of the probability of finding a second electron on
the tail of atom 2 facing atom 1 and a corresponding increase
of probability in the inner region of atom 2. Consequently,
the reference electron on the tail of atom 1 views the charge
modulation associated to its correlation hole in atom 2 as an
electric dipole. Again, this intuitive picture can be given a
firm mathematical formulation by performing a multipolar
expansion in Eq. (21). Since the electron densities of atoms
1 and 2 do not overlap, the sum rule for the correlation hole
is also fulfilled for the part of the correlation hole localized
in atom 2,∫

�2

n2(r2)[gc(r1, r2; [n]) − 1]d3r2 = 0, (22)

and the leading term in the expansion is the dipolar term

Vc(r1) ≈ − D2[r1]
d2[r1]

(23)

where D2 is the dipole moment of the part of the correla-
tion hole on atom 2 and d is the distance between the refer-
ence electron and the effective location of the dipole. Strictly
speaking, the magnitude of the dipole moment depends on
the location r1 of the reference electron, so both D2 and d are
implicit functions of r1 and the notation used in Eq. (23) re-
flects this fact. The interaction energy between the two atoms
then becomes

Eint =
∫

�1

n1(r1)Vc(r1)d
3r1 ≈−

∫

�1

n1(r1)
D2[r1]
d2[r1]

d3r1. (24)

Assuming a weak dependence of D2 on r1 and noticing that
d can be approximated by the distance R between the two
atoms lead to Vc(r1) ≈ −D2/R2. Now using the same argu-
ment as in Sect. 2 to estimate D2 , the leading term in the
asymptotic behavior of Vc(r1) becomes

Vc(r1) ≈ − α2

2R4 (25)

where α2 is the polarizability of the neutral atom 2. There
is no difficulty with the fact that the reference electron is
in atom 1 and the correlation dipole in atom 2, because we
are dealing with Coulomb interactions; this can be viewed
as a nonlocal effect of Coulomb correlation. Returning to
Eq. (24), the direct interaction energy between the two atoms
can be written as:

Eint(R) ≈ −
∫

�1

n1(r1)
α2

2R4 d3r1. (26)

This result is valid for large R, although not for R → ∞.
To appreciate this, let us return to Eq. (24). Here the factor
Vc(r1), varying as R−4, has to be multiplied by the electron

density of atom 1, an exponentially decaying function. So, in
practice, the direct interaction decays much faster than R−4.

The similarity between the result in Eq. (25) and the
asymptotic correlation potential of an isolated atom stud-
ied in Sect. 2 may be noticed. This is not surprising because
the two potentials have the same physical origin: the leading
(dipolar) component of the Coulomb correlation hole asso-
ciated to an electron. However, a difference is also evident.
The polarizability that appears in the case of an isolated atom
is that of the single-charged cation left behind by the elec-
tron. On the other hand, for the case of two interacting atoms
the polarizability is α2, that of neutral atom 2 , because the
potential arises from the correlation hole that an electron of
atom 1 builds in atom 2.

By restricting attention, for the moment, to distances R
where Eq. (26) is valid, the factor α2/2R4 can be moved
outside the integral, to obtain

Eint(R) ≈ −Q1
α2

2R4 , (27)

where Q1 is the integrated electronic charge of atom 1. How-
ever, this overestimates the interaction and a reduced charge,
about Q1/2 or even less, is more appropriate. The reason
is that sizable contributions to the integral of Eq. (26) only
occur when r1 is on the tail of atom 1 facing atom 2. On the
other hand if r1 is in the region of atom 1 opposite to atom
2, the Coulomb interaction between an electron at r1 and the
electrons of atom 2 will be effectively screened by the elec-
trons of atom 1; in such a case the fraction of the correlation
hole nc(r1, r2) located on atom 2 is negligible. This effect
can be taken into account in an approximate way by extend-
ing the integral in Eq. (26) to one half of the volume of atom
1 only, with the result

Eint(R) ≈ − Q1

2

α2

2R4 . (28)

If the two atoms are different, by repeating the derivation
of this equation interchanging the role of the two atoms one
obtains Eint(R) ≈ −(Q2/2)(α1/2R4). The equality of Eint
then implies
α1

Q1
= α2

Q2
, (29)

that is, the ratio between the electric dipole polarizability of
one atom and its electronic charge should be approximately
constant. Due to the approximations made in deriving this
relation, one should not expect this result to have general
validity. In particular the reduction of Q depends strongly
on the valence of the atom, and this is discussed below. The
validity of the relation improves by restricting its applica-
tion to a family of similar atoms down a row of the Periodic
Table. Figure 1 shows that the relation works well for the
noble gases He, Ne, Ar, Kr, Xe and for the halogen atoms F,
Cl, Br, I (the experimental polarizabilities are taken from
Refs. [24, 25]); however, as expected, the proportionality
constant between α and Q is different in the two groups.
Other atomic groups display a similar behavior, with the
slope progressively increasing as one moves to the left of the
Periodic Table.
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Fig. 1 Measured polarizability versus total electronic charge for noble
gas atoms (Group I) and halogen atoms (Group II)

Elements from different groups of the Periodic Table can
be related if we notice again that, in practice, only the out-
ermost part of atom 1 contributes to the integral in Eq. (26),
because only in such a case there is a part of the correlation
hole on atom 2. This can be simulated by considering that a
better representation of Eq. (28) is

Eint(R) ≈ − Q1

2F

α2

2R4 , (30)

where the reduction factor F , higher than 1, is different for
different groups of the Periodic Table. This factor takes into
account how fast the atomic electron density decays. That
decay is controlled by the value of the ionization potential
I according to the relation ρ(r → ∞) ∝ e−√

I r , and I
becomes higher as the number of electrons in the outer shell
increases [26, 27]. So, the reduction factor F for the inert
gases is much larger than for the alkaline atoms. The alter-
native to Eq. (29) in this case is

α1 F1

Q1
= α2 F2

Q2
, (31)

that is,

α = b
Q

F
(32)

where the constant b is now universal. Evidently, a reduc-
tion factor F that increases by moving from the left to the
right of the Periodic Table accounts for the reduction of slope
observed in Fig. 1 when the number of electrons in the outer
shell increases. In summary, the result in Eq. (26) or (30) can
be interpreted as giving the leading term in the interaction
between the two atoms for R large but not for R → ∞.

To obtain the van der Waals interaction between atoms
1 and 2 we start again by considering that an electron in
atom 1 is surrounded by its Coulomb correlation hole, so
when this electron moves around, its correlation hole moves
with it. We have studied in Sect. 2 the limiting case when
this reference electron is in the tail of the atom, but now we
are not restricted to that limit; that is, we are also interested

in positions r1 of the electron in the bulk of atom 1. The
potential that the correlation hole of this electron creates at a
distant point R can be expanded in multipolar components.
The lowest order term in the expansion is the dipolar term,
−D1 R−2, where D1 is the dipole moment of the correlation
hole density nc(r1, r′). The calculation of the correlation hole
density is very difficult. For this purpose a precise description
of Coulomb correlation, beyond the level presently available
in the usual implementations of DFT, would be required. This
makes difficult even a rough estimation of the dipole moment
D1, but since the correlation hole consists in an instantaneous
internal rearrangement of the distribution of the electrons of
atom 1 around a reference electron, the magnitude of D1
should be proportional to the polarizability α1 of the atom.
The electric field of this dipole is of the form E = D1 R−3.
This electric field induces a correlation dipole in atom 2

Dind
2 = α2E, (33)

where α2 is the polarizability of that atom, and the attractive
interaction between the fluctuating dipole in atom 1 and the
induced dipole in atom 2 is

Edd
int(R) = − D1 Dind

2

R3 . (34)

Finally using the above results for D1 and for the induced
dipole moment Dind

2 gives the van der Waals interaction en-
ergy

Edd
int(R) = −C6

α1α2

R6 , (35)

where all the proportionality factors have been included in the
constant C6. We point out that the method employed to derive
van der Waals interactions is similar to that used by Becke
and Johnson [14], but a key physical ingredient is different:
we use the Coulomb correlation hole as the ultimate origin of
these forces, instead of the exchange hole. The two contribu-
tions represented by Eqs. (26) and (35) can be considered as
the two first terms in an expansion of the interaction energy
of Eq. (19).

4 Discussion and summary

Evidently, at its present stage of development the method pre-
sented in this paper does not allow for the application of DFT
to calculate van der Waals interactions between two atoms or
two molecules quantitatively because this is an asymptotic
result; that is, as the distance R between the two atoms de-
creases and the overlap between the electron densities n1 and
n2 increases, some of the approximations used here would
have to be improved, and the precise form of the correlation
hole needs to be modeled in detail. However, the intention of
this work is not to provide a practical scheme to quantitatively
calculate van der Waals interactions. Instead, the purpose is to
illustrate how the van der Waals forces arise in a DFT frame-
work, and to identify the microscopic mechanism in terms
of concepts used in DFT. In fact, the work shows that these
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long-range interactions are due to fully nonlocal Coulomb
correlation effects between the electrons in different atoms,
and in particular to the leading (dipolar) component of the
correlation hole when two atoms are sufficiently far apart.
This picture, not recognized until now, is at variance with a
recent model in which the instantaneous dipole moment of
the exchange hole in an atom is used to generate a dispersion
interaction between nonoverlapping systems [14].

In addition, the derivation provided here makes clear that
the term R−6 dominates only at sufficiently large R, when
other shorter-range interactions have already vanished. This
is, in our opinion, the reason for the unexpected reasonable
performance of simple density functionals in some cases
involving weak interactions, for instance the physisorption
of molecular hydrogen on the surface of graphite and carbon
nanotubes [28–31], or the physisorption of benzene on the
surface of carbon nanotubes [32]. In other words, we think
that the weak binding in those cases is due, in a substan-
tial part, to the nonnegligible overlap between the electron
density tails at the equilibrium separation and to the small
redistribution of the electron density. The van der Waals inter-
action becomes effective only at higher separations.

In summary, the asymptotic form of the exchange
–correlation potential of DFT in the tail of a neutral atom,
given in Eq. (2), has been derived (except for a constant fac-
tor in the second term) using a method relying on the prop-
erties of the exchange–correlation hole. In a second step, the
analytical form of the long-range van der Waals interaction
between two atoms has been obtained. These forces can be
viewed as arising from a mechanism fully controlled by Cou-
lomb correlations. An electron of atom 1 builds a correlation
hole around it that moves with the electron. Far from the
atom, the electric field due to this correlation hole behaves in
leading order as a dipolar field. This correlation dipole ind-
uces another correlation dipole in atom 2, and the interaction
between the two dipoles leads to the long-range dispersion
interaction. The work makes clear that this is an asymptotic
result, valid when the distance between the two atoms is large
enough.
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